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Cardiac Magnetic Resonance (CMR) is a powerful technique which can be used to perform a comprehensive
cardiac examination. However, its adoption is often limited to specialised centres, in part due to the need
for highly trained operators to perform the complex procedures of determining the 4 standard cardiac
planes: 2-, 3-, 4-chamber and short axis views. Tools for automating this planning process have been
proposed (e.g., Cardiac Dot), but still require some user input. Recently, Deep Learning (DL) methods
have been proposed to achieve automatic cardiac planning. For example, cardiac anatomic landmark
regression from 2D images has been used to prescribe the standard CMR view planes with good results,
but it requires extensive manual annotation to build a dataset to train such methods. Manual annotation
free methods have also been proposed for computed tomography (CT), but predict each view position
and orientation separately. A similar approach based on rapidly acquired volumetric images could be
applicable to CMR where automated view planning would be even more valuable. Here, we propose a
set of four deep convolutional neural network (CNN) models (DeepCardioPlanner), each trained via a
multi-task learning (MTL) approach, to predict the orientation and position of each cardiac view plane
from a rapidly acquired 3D scan. This work focus on providing a comprehensive overview of the main
steps taken while building the final tool, highlighting the various challenges that arose and how they were
dealt with. In particular, we cover how we dealt with the particularities of our dataset, we experiment with
different network architectures, loss weighting strategies and hyperparameter tuning. We tested the ability
of DeepCardioPlanner to automatically plan the four cardiac views on clinically acquired patient CMR
data. Test set error metrics revealed to be comparable with the literature, inclusively matching the range of
values for inter-operator variability.
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INTRODUCTION

Cardiovascular diseases (CVDs) are a leading cause of prema-
ture death and disability worldwide, with increasing incidence
and substantial associated costs. Cardiac Magnetic Resonance
(CMR) has emerged as a comprehensive imaging technique for
evaluating and assessing CVDs, offering a wide range of cardiac
examination capabilities. However, CMR requires highly trained
operators for determining the standard double-oblique view
planes: short axis (SAX), 2-chamber (2CH), 3-chamber (3CH),
and 4-chamber (4CH) views. These patient-specific planes are
traditionally prescribed through a multistep planning process,
requiring several scout scans and manual adjustments, which
increase the scan time and workflow complexity.

To address these challenges, there is a need for automated
solutions that can assist or even fully automate the planning
process, simplifying the protocol, reducing operator burden, and
minimizing scan time. Automated planning tools would enable
more efficient patient examination, enhance reproducibility, and
widen access to CMR.

Tools for automating this planning process have been pro-
posed (e.g., Cardiac Dot1), but still require some user input.
Recently, Deep Learning (DL) methods have been proposed to
achieve automatic cardiac planning 2,3,4,5. For example, cardiac
anatomic landmark regression from 2D images has been used to
prescribe the standard CMR view planes with good results,2,4
but it requires extensive manual annotation to build a dataset
to train such methods. Manual annotation free methods have
also been proposed for computed tomography (CT), but predict
each view position and orientation seperately3. A similar ap-
proach based on rapidly acquired volumetric images could be
applicable to CMR where automated view planning would be
even more valuable.

Here, we propose a set of four deep convolutional neural
network (CNN) models (DeepCardioPlanner), each trained via
a multi-task learning approach, to predict the orientation and
position of each cardiac view plane from a rapidly acquired 3D
scan. We tested the ability of DeepCardioPlanner to automati-
cally plan the four cardiac views on clinically acquired patient
CMR data.

In this thesis, we propose DeepCardioPlanner, a set of four
deep convolutional neural network (CNN) models trained using
a multi-task learning approach. These models are designed to
jointly predict the orientation and position of each cardiac view
plane in CMR without user input. By utilising rapidly acquired
3D scans, our models can leverage global context and eliminate
the need for extensive landmark annotation.

METHODS

The general outline of the preprocessing steps applied to the
dataset, the split performed for the training of the several clas-
sifiers presented in this paper and the metrics used is depicted
on Figure ?? and will be described with further detail in the next
subsections.

Dataset
The dataset used to train our models is comprised of 120 3D
CMR scans from different patients labelled with the respective
view defining vectors of each of the 4 standard CMR view planes.
Each plane is defined by the DICOM image position vector (

−→
t )

[? ] and the DICOM image orientation vectors −→o1 and −→o2 [? ].
Vectors −→o1 and −→o2 are unitary, orthogonal to one another and

their cross product defines the normal vector (−→n ) to the plane,
while vector

−→
t give us the location of the origin of the plane,

meaning the centre of the first voxel of that slice being transmit-
ted. Similarly to the view planes, the location and orientation of
the 3D scans also comes specified by an equivalent set of vectors.

Data were acquired on a 1.5T Philips scanner, using standard
clinical protocols and an ECG-triggered volumetric bSSFP se-
quence with field of view of 440x440x150 mm3 , voxel size of
3x3x3 mm3 , compressed SENSE acceleration factor six, and scan
time of 10 seconds (assuming 60 bpm heart rate). Adding to that,
51% of the scans were acquired via a LGE-Imaging technique
thus including the trace of the contrast. The dataset is quite
varied as it was obtained from patients from a wide range of
ages, with different pathologies and also by multiple operators.

It is important to note that these data were provided by the
University of Linköping and its use in this study was approved
by that same institution’s ethical committee. Adding to that,
every patient whose data is included in this dataset is aware of
its use and provided their written informed consent.

To evaluate the models on unseen data, the dataset was split
into three subsets: 88 samples for training (74%), 16 samples
for validation (13%), and 16 samples for testing (13%), follow-
ing a stratified approach to maintain a similar percentage of
volumes with contrast in each subset as in the entire dataset,
ensuring unbiased evaluation of the trained models from the
same distribution.

Pre-processing
The reference frame with relation to which all the orientations
and positions come defined is called DICOM’s Reference Co-
ordinate System (RCS), but, since we want our models to be
predicting these view planes from the volume, we must ensure
that the predictions can be made using a coordinate system
centred on the volume. With that in mind, an extra step of trans-
forming each view vector from the aforementioned RCS into a
new reference frame centred on the origin of the 3D scan was
taken. For that purpose, affine transform matrices were built
from the orientation and position vectors of each volume which
were then used to perform this transform to the corresponding
view vectors.

The nature of our problem allows two equally correct solu-
tions for each plane’s orientation, i.e. the one actually prescribed
and its flipped version. Consequently, each view’s dataset plane
orientation distribution can appear bimodal, with a 180°angle
between the two modes. A dataset preprocessing step is pro-
posed to transform the label vectors from one mode to the other,
thereby ensuring that this non-anatomical variance is not a con-
founding factor during training.

Image intensity was standardised to improve model con-
vergence. The volume’s axis were swapped to ensure label to
volume correspondence. The volumes were resized from an
isotropic resolution of 3mm to 4mm to reduce computational
burden. Data augmentation consisting of additive noise, scaling.
translation, rotation, among other transforms, is also used to
increase the models’ generalisability.

Figure 3 depicts the full preprocessing pipeline applied to a
batch of images every training step.

Multi-objective Loss Function
To address the plane position and orientation subtasks simul-
taneously, training was performed by combining two losses.
Leveraging knowledge that a plane is defined by a point within
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Fig. 1. a) Input volume for a representative subject, b) 2D mid slices (coronal, sagittal and transverse) and c) corresponding ground
truth standard view planes and their view defining vectors: −→o1 and −→o2 define orientation and

−→
t defines the location of the plane’s

centre. Includes a scheme of each image plane position and orientation within the volume

Fig. 2. A) Different orientation vector pairs that depict the
same plane orientation. B) Distribution of the angles between
all 2CH and 4CH −→o1 and −→o2 before and after adjusting the
dataset.

it and a normal vector, the plane position loss is set to the
Euclidean distance between a predicted point and the plane:
Lpos = ||

−→
dp || = |

−→
dc · −→n |, with

−→
dc =

−→
t −−→

t pred
The orientation loss is computed as the cosine similar-

ity between the predicted and ground truth normal vectors.
In fact, two variations of the orientation loss were experi-
mented with. One considers only the exact ground truth
−→n and a viable solution, while the other considers both −→n
and −−→n as optimal solutions: Lori = −cos(θ) and Lorimod

=
1 − |cos(θ)| , with θ angle between −→n pred and −→n

The two task specific losses need to be combined into a sin-
gle one that is able to be backpropagated through the shared
network. That is achieved via a weighted sum: L(W) =
wpos · Lpos(W) + wori · Lori(W), where wpos is the position loss
weight and wori the orientation one.

Fig. 3. Loading, pre-processing and augmentation pipeline.
All the mentioned operations, from the loading to augmenta-
tion, are performed to every sample in a batch during training
before feeding them into the network.
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A uncertainty based loss weighting approach is also exper-
imented with, where the loss weights were included as learn-
able parameters of the network through homoscedastic uncer-
tainty [? ]: L(W, σpos, σori) =

1
2σ2

pos
· Lpos(W) + 1

2σ2
ori

· Lori(W) +

log(σposσori)

Network Architecture

Throughout this project several architectures were tested, but our
main results were obtained using two different hard parameter
sharing MTL approaches with distinct levels of information
sharing: A fully shared architecture (NA), in which every layer
is shared between the two tasks; A multi-headed architecture
(NB) with 2 task-specific heads for separate prediction of the
plane position and orientation. In both networks the feature
extracting block is shared between the tasks.

Fig. 4. Baseline model architecture. Numbers on top of the
convolutional and dense layers depict the number of filters
and units, respectively.

Fig. 5. Architecture with 2 task specific regression heads.

Performance Metrics

Performance on the position prediction sub task is assessed by
the displacement error (εd) which, just like the position loss, is
computed as the distance between the predicted point (

−→
t pred)

and the plane in millimetres.

εd = ||
−→
dp || = |

−→
dc · −→n |, with

−→
dc =

−→
t −−→

t pred (1)

The orientation sub task performance is assessed through the
angulation error (εθ), which is the angle between the predicted
normal vector to the plane (−→n pred) and the line defined by the
ground truth plane normal vector (−→n ) in degrees. In practice,
this metric can be defined as function of the angle θ between the
predicted and true normal vectors. Just like the loss, this metric
also considers both −→n and −−→n as equally correct solutions.

εθ =

{
θ for θ ≤ 90
180 − θ for θ > 90

(2)

Training Details
As an optimiser we used ADAM with its default parameters as
defined in its Keras implementation. The learning rate was set
to 10−3. Weight decay was also added to the loss using a weight
of 1e-6. Batch size was fixed to 16 samples as more than that
would not fit in our GPU’s RAM and less would lead to a too
unstable training where the gradients estimated are more likely
to not accurately represent the overall dataset.

The validation loss was monitored during training with the
early stopping callback [? ] parameterised with a 50 epoch
patience, which ensures the training stops after 50 epochs with
no validation loss decrease. Also, to ensure the reproducibility
of our findings, a seeding function was also implemented and
ran before each training.

Given the chosen batch size and preprocessing pipeline, train-
ing for one epoch (N = 88 samples) takes approximately 40 sec-
onds. Inference times are under 1 second, excluding volume
reslicing.

Experimental Setup
The experiments were conducted using Python ver-
sion 3.10.12 and Keras (Keras: The Python Deep
Learning Library https://keras.io/) with TensorFlow
(https://www.tensorflow.org/) backend (version 2.12.0).
All models were independently trained on a Google Co-
lab Pro instance used was equipped with a 15.35GB Tesla
T4 GPU. The complete code base for the experiments is
available open source at the following GitHub repository:
[https://github.com/pedr0sorio/DeepCardioPlanner].

RESULTS

Dealing with Dataset Challenges
First set of experiment described in this work are aimed at ad-
dressing the irregular learning behaviour of the orientation pre-
diction task for the 2CH and 4CH view models, caused by the
bimodal distributions of plane orientation in those datasets.

Both the previously described label adjustment preprocess-
ing step, along with the modified cosine similarity orientation
loss function are introduced to answer this problem. Both ap-
proaches successfully address the problem leading to improved
convergence and better performance metrics. A new baseline is
proposed using both approaches simultaneously.

Single Branch Network - Automated 2CH view prediction opti-
misation
The previous baseline shows a notable bias on the orientation
task, as none of the models are able to reach very low values,
thereby showing evidences of underfitting (see Figure 6). Using
the 2CH view prediction as a representative task, the next set
of experiments are aimed at increasing the effective capacity
of the model in order to escape underfitting. In particular, we
will analyse model complexity, experiment with different loss
weighting strategies and tune the learning rate.

We find that NA is complex enough to model each sub task
separately. This motivates the search for a better loss weigh com-
bination, finding that increasing the value of wori successfully
compensates for the difference in scales of the two task specific
losses, ensuring neither dominates the joint loss and, thus, the
training. The learning rate is also tuned.

Here, uncertainty-based loss weighting was introduced.
However, the approach showed minimal impact on task learn-
ing as the weights remained largely unchanged. This suggests

https://github.com/pedr0sorio/DeepCardioPlanner
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Fig. 6. Training curves for all view models after changing orientation loss to Lorimod
and applying the label adjustment. Best epoch is

marked with a blue and red dot on the validation and training curves, respectively.
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that the homeoscedastic uncertainty, on which the weighting
relies, did not differ significantly between the tasks, limiting its
effectiveness.

Multi-Headed Network - Automated 2CH view prediction
After finding an optimal loss weighting setting and learning
rate, we proceed with evaluating how different levels of infor-
mation sharing can impact the model performance and learning
behaviour. Architecture NB is introduced, finding that the level
of hard parameter sharing in NA was excessively constraining
the hypothesis space of the model. The new architecture leads to
the model reaching not only lower training, but also validation
and test set errors (see Figure 7). With this new best training

Fig. 7. 2CH view model test set performance (a) and curves (b)
when training on a fully shared architecture (NA) or a multi-
headed one (NB). Validation curve plotted as a full line and
the train curve as a dotted one. Best epoch is marked with a
blue and red dot on the validation and training curves, respec-
tively.

setting, the effect of data augmentation and volume resolution
are evaluated. We demonstrate how data augmentation must be
applied moderately to ensure the reality of the transformations.
A higher resolution volume did not improve performance, hint-
ing at the fact that finer details might not be as relevant for CMR
view prescription as coarser features of the scans.

Finally, one last comparison between MTL and STL is made.
Given the design of the losses and the training setting, using a
MTL approach outperforms having a separate model for each
task (STL). Also, training on solely the position loss leads to a
gradual improvement of orientation loss during training which
highlights the inter-dependency of the two tasks and explains
the better performance achieved when training on both objec-
tives simultaneously.

DeepCardioPlanner - Automated 2CH, 4CH, 3CH and SAX view
prediction
Here, we assess the generalisation of the aforementioned
changes based on the 2CH view model to the remaining mod-
els. We found they generalise satisfactorily, highlighting how
all the view predicting models suffered from the same type of
underfitting problems we aimed to address for the 2CH model.

DeepCardioPlanner comprises the top-performing models, one
for each view, which collectively enable the automatic view pre-
scription for all four standard CMR view planes from a rapidly
acquired scan.

Fig. 8. Comparison of test set angulation error distribution be-
tween our tool and the method by Chen et al [? ]. DeepCardio-
Planner: Our performances; DL-reader1: Their performances
on samples from the same operator that generated their train-
ing set; DL-reader2: Their performances on samples from a
never seen operator; Inter-reader: Differences in plane orienta-
tion between the two operators.

We further compared DeepCardioPlanner with the literature
finding that it yields performances metrics within the literature
ranges for the same task with CT and wherein STL approach was
taken [? ]. Not only that but the attained error distributions are
much alike the inter operator differences from the same work [?
]. The resemblance in the error distributions further supports the
validity and reliability of our model’s predictions, as they align
with the inherent variability observed in human assessments.

DeepCardioPlanner does not perform as well as other land-
mark based regression methods, but it achieves promising re-
sults considering the limitations of our dataset.

CONCLUSION

In this work we have explored how it is possible to leverage a
MTL approach to train one deep learning model to predict each
one of the standard SAX, 2CH, 3CH and 4CH CMR view planes,
from a rapidly acquired 3D scan (∼10sec). The proposed tool
shows potential to greatly reduce examination time and com-
plexity, as it provides an accurate and fully automatic alternative
to conventional CMR view planning.

We acknowledge certain limitations inherent to our research
design. A larger and more diverse dataset would have helped
with the assessment of the generalisation ability of the models.
K-folds cross validation could have been used to increase ro-
bustness of the results. This did not happen due to the lengthy
nature of our trainings and the fact that our access to a GPU
was very limited. Also, it is likely that tailoring the training
setting to each specific view predicting model would result in
improved overall performances. The access to the GPU was also
a constraint in this regard.

As future work we leave experimenting with different CNN
architectures like ones that exploit residual learning. More re-
fined MTL approaches should also be considered for future
developments in this topic.

Also going forward, it would be recommended to perform
a statistical analysis in order to assess if the performance error
metrics are statistically different from zero. Also, designing
and conducting a clinical reading where domain experts would
classify the quality and clinical relevance of the predicted planes
would contribute with extra robustness to any future results.

Finally, one other interesting avenue to explore is whether
we can extend this multi-task learning approach from single
view prediction per model to a multi view prediction per model.
Training the model to prescribe all view planes jointly might
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produce good results by leveraging the relative position and
orientation between views.
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